
Introduc)on to Stata 



Training	Workshop	on	the		
Commitment	to	Equity	Methodology	

CEQ	Ins;tute,	Asian	Development	Bank,	
and	The	Ministry	of	Finance	

Dili	
May-June,	2017	



What is Stata?


• A	programming	language	to	do	sta;s;cs	
•  Strongly	influenced	by	economists	
• Open	source,	sort	of	
•  You	can	see	how	Stata	codes	many	of	its	commands	
•  You	can	add	your	own	commands	to	Stata	
•  You	can	publish	commands	for	others	to	use	

• An	acceptable	way	to	manage	data	



How Stata Works


•  You	can	work	interac;vely,	through	a	user	interface	
•  For	serious	work,	it	is	much	bePer	to	write	
programs	
•  Stata	calls	these	“do	files”	
•  Allows	reproduc;on	of	your	results	
•  Allows	iden;fica;on	and	rec;fica;on	of	errors	
• We	s;ll	run	these	“do	files”	interac;vely,	mostly	

•  Stata	does	everything	in	RAM,	except	reading	data	
(from	other	places)	and	saving	data	(to	other	
places)	
•  To	do	anything,	you	must	load	data	into	RAM	



Where Your Computer Stores “Data” (Stuff)


• RAM	(random	access	memory)	
•  very	fast	
•  “forgets”	what	it	had	when	the	power	goes	out	

• Disks	(hard	drives,	usb	drives,	dvd’s,	etc)	
•  Much	slower	
•  But	stable	–	they	remember	what’s	recorded	on	them	
when	the	power	goes	out	

•  Internet	(“the	cloud”,	file	servers,	etc)	
•  Slower	s;ll	
•  But	vast	

•  To	work	in	Stata,	you	must	“load”	or	“read”	data	
stored	on	a	disk	or	the	internet	into	the	RAM	



Three Topics for Today


•  Sta;s;cs	
•  Stata	is	really	good	at	genera;ng	sophis;cated	sta;s;cal	
analyses	
•  But	we	will	mostly	skip	this	

• Data	management	
•  This	is	about	geZng	data	into	the	RAM	(and	Stata)	and	
then	geZng	(other)	data	out	to	permanent	storage	
•  And	about	manipula;ng	data	–	crea;ng	new	variables,	
modifying	exis;ng	ones	
•  And	about	manipula;ng	datasets	

•  Mostly,	merging	two	different	datasets	

• Programming	
•  How	to	keep	a	permanent	record	of	what	you’re	doing	
•  How	to	manipulate	data	efficiently	



How to Load Data into Stata


• Many	op;ons	
•  Type	them	in	by	hand	(ugh)	
•  Manually	copy	from	Excel	or	Word	or	a	text	processor	
and	paste	into	Stata’s	data	editor	window	
•  Read	them	from	a	comma-	or	space-delimited	file	
•  Read	them	from	an	Excel	spreadsheet	
•  Read	them	from	a	Stata	dataset	(Stata	extension	is	.dta)	

• We	will	focus	on	the	last	two,	which	are	the	most	
common	
•  Stata	has	commands	for	each	
•  use	<dataset	path	and	filename>	for	Stata	datasets	
•  Import	excel	<spreadsheet	path	and	filename>		



An Aside on (Sub-)Directories and Paths


• Windows	(or	Mac	OS)	must	organize	its	many	files	
stored	on	a	disk.	In	Windows,	it’s	like	this:	



An Aside on (Sub-)Directories and Paths


•  The	sub-directories,	or	folders,	help	you	(and	
Windows)	keep	files	organized	
•  To	read	a	file,	you	need	to	tell	Stata	where	it	is	
•  Requires	a	path	(subdirectory)	…	
•  …	and	filename	

•  For	example:	
•  use	c:\CEQ_Timor_training\stata\data\??.dta	

•  This	is	a	Stata	command	to	read	the	Stata	dataset	??.dta	into	the	
RAM	so	Stata	can	work	on	it	

•  import	excel	using	"c:
\CEQ_Timor_training\info_for_examples\inc_dist.xlsx",	
sheet("Gini")	cellrange(B4:F15)	firstrow	
•  This	is	a	Stata	command	to	read	part	of	an	Excel	spreadsheet	



Loading Data from Excel – Let’s Try It


•  First,	check	that	the	Excel	file	is	on	your	disk:	
•  dir	"c:\CEQ_Timor_training\info_for_examples\”	

• Now	go	look	at	that	spreadsheet	(with	Excel)	
•  Import	the	data:	
•  import	excel	using	"c:
\CEQ_Timor_training\info_for_examples\small_data.xlsx"
,	sheet(“HH_1")	cellrange(A3:E8)	firstrow	

•  See	what	you	imported:	
•  list	*,	clean	
•  describe	

• Put	some	labels	on	the	variables	
•  label	var	hhid	“Unique	household	id”	
•  etc	



Labeling and Saving Data


•  Label	the	dataset:	
•  label	data	“Prac;ce	dataset	#1,	household	data”	

•  Sort	the	data:	
•  important	for	us	to	be	able	to	merge	later	
•  sort	hhid	

• Describe	the	data	again	
•  Save	the	data:	
•  first,	check	the	default	(sub)directory:	

•  pwd	(“present	working	directory”)	
•  now	save:	

•  save	“c:\CEQ_Timor_training\info_for_examples\HH_1”	

• And	load	the	data	again	(now	a	Stata	dataset)	
•  use	“c:\CEQ_Timor_training\info_for_examples\HH_1”	



Manipula)ng Data


• Create	a	new	variable,	income	per	capita	
•  generate	income_pc	=	income/hhsize	
•  label	var	income_pc	“HH	Income	per	capita”	

• Create	a	new	variable,	condi;onal	on	some	criterion	
•  generate	income_pa	=	income/hhsize	if	income>500	
•  list	what	you	got	
•  generate	poor	=	(income_pc<500)	
•  list	what	you	got	

•  Label	the	values	of	a	variable	
•  label	define	poorstatus	0	“Non-Poor”	1	“Poor”	
•  label	values	poor	poorstatus	

•  Save	the	data	again	…	



Structure of (Almost) All Stata Commands


•  verb	variable(s)	<if	…>	[weights],	op;ons	
•  verb	is	the	command	
•  variable(s)	are	the	variables	to	operate	on	
•  if	…	is	to	subset	the	command	to	only	some	
observa;ons	
•  [weights]	are	to	apply	different	weight	to	each	
observa;on		
•  Stata	has	several	types	of	weigh;ng	schemes	

• op;ons	are	command-specific,	and	always	come	
awer	a	comma,	at	the	end	



Merging Data:  one-to-one merges


•  Some;mes	we	merge	datasets	that	have	one	record	
(row	of	data)	for	each	value	of	the	variable	we	are	
merging	on	(for	example,	hhid):	

•  command	syntax	is:	
•  merge	1:1	<merge	variable>	using	<name	of	dataset	2>	
•  to	work	dataset	1	must	be	loaded	into	RAM	
•  to	work,	both	datasets	must	be	sorted	by	the	merge	variable	

id income id HH	size
1 100 1 4
2 50 2 3
3 80 3 6
4 200 4 3
5 70 5 2

Dataset	1 Dataset	2



Merging Data:  one-to-one


•  This	merge	also	works	as	a	one-to-one	merge:	
•  merge	1:1	id	using	dataset2	

	
• Note	that	Stata	leaves	missing	value	codes	where	it	
found	no	data	

id income id HH	size
1 100 1 4
3 80 2 3
5 70 3 6

4 3
5 2

Dataset	1 Dataset	2
id incomeHH	size

1 100 4
2 . 3
3 80 6
4 . 3
5 70 2

Result



Merging Data:  one-to-one


•  This	merge	does	not	work:	
•  merge	1:1	id	using	dataset2	

	
• What	went	wrong?	

id income id HH	size
1 100 3 6
2 50 1 4
3 80 4 3
4 200 5 2
5 70 2 3

Dataset	1 Dataset	2



Merging Data:  one-to-one


•  This	merge	works,	but	is	wrong:	
•  merge	using	dataset2	

• What	went	wrong?	
•  This	is	the	most	dangerous	merge	mistake!	

•  Avoid	it	by	always	using	1:1	or	n:1	or	1:n	in	your	merge	command	
•  Note	what	happens	to	“id”	–	no	overwrite	

id income id HH	size
1 100 3 6
2 50 1 4
3 80 4 3
4 200
5 70

Dataset	1 Dataset	2
id incomeHH	size

1 100 6
2 50 4
3 80 3
4 200 .
5 70 .

Result



Merging Data:  one-to-one


•  This	merge	does	not	work:	
•  merge	1:1	id	using	dataset2	

	
• What	went	wrong?	

id income id HH	size
1 100 2 4
2 50 2 3
3 80 3 6
4 200 4 3
5 70 5 2



Merging Data:  one-to-one and n-to-one


•  Some	datasets	may	have	mul;ple	observa;ons	for	each	
unique	observa;on	in	another	dataset	
•  household-level	data	vs.	individual-level	data	
•  Stata	will	do	an	“n-to-one”	or	“one-to-n”	merge	here	

•  Load	the	individual-level	data	from	the	spreadsheet	
•  import	excel	using	"c:
\CEQ_Timor_training\info_for_examples\small_data.xlsx",	
sheet(“indiv")	cellrange(A3:D20)	firstrow	
•  sort	hhid	pid	
•  save	"c:\CEQ_Timor_training\info_for_examples\indiv”	

• Now	merge	in	household	data	
•  merge	n:1	hhid	using	"c:\CEQ_Timor_training\info_for_examples\HH_1”	



Merging Data – Prac)ce


•  Load	and	save	the	data	in	tabs	HH_1	and	HH_2	
•  import	excel	using	"c:
\CEQ_Timor_training\info_for_examples\small_data.xlsx",	
sheet(“HH_1")	cellrange(A3:E8)	firstrow	
•  save	"c:\CEQ_Timor_training\info_for_examples\HH_1”	
•  import	excel	using	"c:
\CEQ_Timor_training\info_for_examples\small_data.xlsx",	
sheet(“HH_2")	cellrange(A3:C8)	firstrow	
•  save	"c:\CEQ_Timor_training\info_for_examples\HH_2”	
•  use	"c:\CEQ_Timor_training\info_for_examples\HH_1”,	clear	

• Merge	the	data	
•  merge	using	"c:\CEQ_Timor_training\info_for_examples\HH_2”	
•  oops	
•  merge	hhid	using	"c:\CEQ_Timor_training\info_for_examples\HH_2”	



Merging Data - Prac)ce


•  Load	the	second	dataset	again	
•  use	"c:\CEQ_Timor_training\info_for_examples\HH_2”,	clear	
•  sort	hhid	
•  save	"c:\CEQ_Timor_training\info_for_examples\HH_2”,	replace	

• Now	load	the	first	dataset	again	
•  use	"c:\CEQ_Timor_training\info_for_examples\HH_1”,	clear	
•  merge	hhid	using	"c:\CEQ_Timor_training\info_for_examples\HH_2”	

• Check	results	
•  list,	clean	
•  desc	



Aggrega)ng or “collapsing” data


•  Some;mes	we	
would	like	to	add	up	
several	rows	of	data	
for	each	household,	
like	this:	
•  the	“collapse”	
command	can	do	
this	

hhid item cons hhid cons
1 food 80 1 150
1 housing 30 2 440
1 clothing 10 3 550
1 services 30 4 8755
2 food 200 5 3755
2 housing 100
2 clothing 60
2 services 80
3 food 220
3 housing 150
3 clothing 80
3 services 100
4 food 2000
4 housing 3500
4 clothing 1500
4 services 1755
5 food 1000
5 housing 2000
5 clothing 500
5 services 255

}
}
}
}
}



Collapsing Data - Prac)ce


•  Load	the	third	dataset	
•  use	"c:\CEQ_Timor_training\info_for_examples\HH_3”,	clear	
•  sort	hhid	

•  list	what	you	have	
•  collapse	(sum)	cons,	by(hhid)	
•  list	what	you	have	
•  try	it	again,	awer	reloading	the	data,	using	
•  collapse	cons,	by(hhid)	

•  try	it	again,	awer	reloading	the	data,	using	
•  collapse	(sum)	cons	



Programming – Wri)ng “do files”


•  It	is	very	bad	form	to	do	research	with	interac;ve	or	
point-and-click	commands	
• Programs	(do	files):	
•  keep	a	record	of	what	you	have	done	
•  allow	you	(and	others)	to	cross-check	your	work	
•  make	it	very	easy	to	make	small	changes	to	your	research	

• Goal:		Let’s	write	a	do-file	to	do	this:	
•  read	all	the	data,	both	HH	and	individual,	in	the	spreadsheet	
•  clean	the	error	in	hhid	
•  merge	them	together	
•  create	HH	income	per	capita	and	per	adult	equivalent	
•  tabulate	average	HH	income	per	capita	by	area	of	residence	



Programming – Wri)ng “do files”


•  Stata	has	an	internal	text	editor,	like	a	word	processor	
•  start	it	with	ctrl-9,	or	the	“window”	menu	

•  Enter	the	commands	we	have	learned,	in	order	
•  run	them:		ctrl-D	or	the	“tools”	menu	
• Add	comments	
•  very	important	for	good	programming	
•  help	you	remember	what	you	are	doing	

•  Locals	and	globals	–	place-keepers	
•  for	example,	use	a	global	for	the	path	
•  or	a	local	for	a	specific	value	
•  or	a	local	with	a	list	of	variables	



Programming – locals and globals


•  Locals	and	globals	are	“place-keepers”	you	can	use	in	
your	do-files	
•  globals	stay	ac;ve	un;l	you	close	Stata	
•  locals	stay	ac;ve	only	un;l	your	do-file	finishes	running	
•  for	example,	use	a	global	for	the	path	

•  global	datadir	c:\CEQ_Timor_training\info_for_examples\	
•  then	this:		use	${datadir}HH_1					
•  is	the	same	as:		use	c:\CEQ_Timor_training\info_for_examples\HH_1	
•  in	general,	programmers	do	not	like	to	use	globals	

•  or	a	local	for	a	specific	value	
•  local	schoolfee	500	
•  Then	these	two	are	the	same:	

•  generate	cost	=	in_school*500	
•  generate	cost	=	in_school*`schoolfee’	

•  or	a	local	with	a	list	of	variables	
	



Programming – locals and globals


• Use	a	local	for	a	list	of	variables	
•  local	vnames	“	hhid	income	hhsize	”	
•  then	summarize	`vnames’	is	the	same	as	

	summarize	hhid	income	hhsize		

•  There	are	other	uses	for	locals,	to	come	later	

	



Programming – Looping


•  Looping	is	when	you	ask	the	computer	to	do	the	same	opera;on	
many	;mes.	
•  Stata	has	several	ways	to	loop,	but	the	foreach	command	is	
easiest	
•  Looping	with	foreach	

•  foreach	<local>	in	<list>	{	
•  …	do	something	to	every	item	in	the	list	…	
•  }	

For	example:	
	foreach	nn	in	hhsize	eqscale	{	
	 	generate	income_`nn’	=	income/`nn’	
	 	}	

Or:	
	local	namelist	“	hhsize	eqscale	“	
	foreach	nn	of	local	namelist	{	
	 	generate	income_`nn’	=	income/`nn’	
	 	}	

	



Exercise


• Write	a	do-file	to:	
•  read	and	merge	all	the	data,	both	HH	and	individual,	in	the	
spreadsheet:	c:
\CEQ_Timor_training\info_for_examples\small_data.xlsx	
•  clean	the	error	in	hhid	
•  merge	them	together	
•  allow	adding	an	arbitrary	value	to	HH	income	if	the	HH	is	rural	
•  create	HH	income	per	capita	and	per	adult	equivalent	
•  tabulate	average	HH	income	per	capita	by	area	of	residence	
•  find	out	how	many	secondary	graduates	there	are	per	HH	

• Comment	it	nicely	
• Use	a	local	and	a	global	
• Use	a	loop	when	you	can	


