

Construction of Income Concepts and Components Sean Higgins Tulane University

Learning Event on the Commitment to Equity Methodology

Tulane University and the World Bank Washington, D.C. – February 18, 2015

Market Income

- Wage and salary income
- Fringe benefits
 - Bonus pay
 - Employer contributions to health insurance
- Self-employment income (farm and non-farm)
- Retirement income
- Captial income
 - Interest
 - Dividends
 - Rent
- Private transfers
 - Child support
 - Alimony
 - Remittances
 - Private contributory pensions
- Imputed rent for owner-occupied housing
- Value of own production

Imputed Rent for Owner-Occupied Housing

- Direct identification
 - e.g., Brazil
 - "How much would this house be rented for if it were rented?"
- Prediction
 - e.g., Bolivia
 - Take households that rent and use the question asking how much they pay in rent
 - Predict rental rates based on characteristics (number of rooms; access to electricity, sanitation, piped water; geographic location; household income; etc.)
 - Use coefficients from this regression in an out-of-sample prediction to predict rental value of owner occupied housing
 - See Appendix C of the CEQ Handbook
- Alternate Survey (with Prediction)
 - e.g., United States
 - No question on how much paid in rent
 - Predict using alternate housing survey with this question

Imputed Rent for Owner-Occupied Housing

- Secondary Source (National Accounts)
 - e.g., Armenia
 - Use a secondary source estimate of average imputed rent as a proportion of income and inflate market income by that amount
 - National Income Accounts have imputed rent for owneroccupied housing, and it is 2.74% of household expenditure
 - Imputed rent = expenditure (equivalent to disposable income) *
 2.74% for households that own their dwelling

Value of Own Production

- Direct Identification (for each item consumed)
 - e.g., Brazil
 - For each item purchased, ask how obtained
 - If own production or taken from own business inventory, value is still asked; use this value
- Direct Identification (one question only)
 - Some surveys ask one question about the total value of own production
 - Use this value in market income

Contributory Pensions

- Only includes pensions from the <u>public contributory</u> <u>system</u>
 - Non-contributory pensions are included in direct transfers
 - Private contributory pensions are included in market income
- Direct identification
 - Some surveys ask one question about the total value of own production
 - Use this value in market income
- Inference
 - e.g., Argentina
 - One question about pensions; use amount to infer whether it was a contributory or non-contributory pension since the latter was a specified amount

Market Income plus Pensions

 Market Income plus Pensions = Market Income + Contributory Pensions

$$m^{+P} = m + P$$

Direct Transfers: Components

- Cash Transfer Programs
 - Conditional and Unconditional
- Non-Contributory Pensions
- Scholarships
- Public Works Programs
 - Also known as "Pay for Work" and "Welfare to Work" programs
 - Include full wage and do not attempt to subtract opportunity cost of individual's time
- Food transfers
 - Considered direct transfers because have well-defined market value, are close substitutes for cash
- Refundable Tax Credits
 - Pay cash to low-income families with no tax liability
 - Function as a transfer

- Direct Identification
 - Many examples from all countries
- Inference
 - Non-Contributory Pensions in Argentina
 - All pensions grouped together; infer whether noncontributory or contributory based on amount and program rules for non-contributory pensions
 - Milk Transfers in Brazil
 - For families that live in eligible region, assume that if they reported the milk they consumed as having been donated, it was from the government
 - Public Scholarships in United States
 - All scholarships grouped together; infer whether Pell grant (government scholarship for low-income) based on amount and program rules

- Simulation
 - Targeted Transfers in Argentina and Bolivia
 - Simulated according to program rules and eligibility criteria (based on income, having children, etc.)
 - Assumed perfect targeting, full coverage and take-up of target population, and no leakages
 - Refundable Tax Credits in US
 - Simulated according to program rules and eligibility criteria (based on income, having children, etc.)
 - Adjusted for imperfect take-up by attributing no benefit to households in which no members reported filing a tax return

- Imputation
 - Food aid in Ethiopia
 - Whether a household receives food aid is reported in survey, but not amount received
 - Total government spending on food aid distributed equally across households that report receiving aid
 - School lunches, uniforms, and textbooks in Ecuador
 - Whether a child receives free school lunches, uniform, and textbooks is reported in the survey
 - Value imputed by distributing total spending from national accounts to households that receive these benefits
 - School uniforms and textbooks in Sri Lanka
 - Same method as in Ecuador
 - Note: scale down totals from national accounts

- Alternate Survey (with Direct Identification)
 - Conditional Cash Transfer in Indonesia
 - Included in a 2013 survey but not the 2012 survey used in the analysis
 - Compute distribution of benefits by region and expenditure decile in 2013 survey
 - Distribute benefits in 2012 survey among eligible households within each region-decile pair

Underestimation of Beneficiaries

- Combines Direct Identification with Imputation
- In most surveys, number of recipients of direct transfers underestimated
 - Compared to national accounts
 - e.g., Bolsa Família in Brazil
 - 7.3 million beneficiaries according to survey
 - 12.4 million beneficiaries according to Ministry of Social Development
 - Even a large problem in developed country surveys
- Solution
 - Assume some beneficiaries erroneously did not report receiving benefit
 - Assume they are similar to beneficiaries that did report receiving benefits
 - Impute benefits to households that did not report benefit but similar to those that did
 - Details on next slide

Underestimation of Beneficiaries

- Let
 - N = number of recipients according to national accounts
 - S = number of recipients according to survey
 - H = N S = number of recipients we will impute benefits to
- Requirement: H < S < N
- Estimate propensity score for program participation
 - Probit of program participation dummy on
 - household income
 - possession of various household assets, consumer durables
 - number of children
 - race of household head
 - region or state
 - rural or urban area
 - etc.
- Randomly sample H of the S beneficiary households
- Match them to non-beneficiary households with closest propensity score

Underestimation of Beneficiaries

- Caveat: probit has to converge for method to work
 - In other words, covariates predict program participation
 - Works well for targeted transfer programs
 - Unlikely to work for non-targeted programs
- Whether to make this adjustment is country team's decision
- Depends on
 - size of discrepancy
 - local knowledge about which is closer to truth: survey or national accounts
- Ideally, run results both ways

Gross Income

 Gross Income = Market Income plus Pensions + Direct Transfers

$$g = m^{+P} + B_d$$

Direct Taxes: Components

- Individual income taxes
- Agricultural income tax (e.g., Ethiopia)
- Payroll taxes
 - Paid by both employee and employer
- Contributions to social security
- Property taxes
- Corporate income taxes
 - Included if possible
- Assumption: direct taxes fully shifted forward to labor in the form of lower wages

Grossing Up

- Suppose reported pre-tax wage is 10
- Reported direct taxes (paid by employee) are 2
- Employer pays 3 in payroll taxes
- The pre-tax wage of 10 is *net of* employer payroll taxes, so gross up pre-tax wage to 10+3 = 13
 - 13 is the pre-tax wage used when constructing market income
- Direct taxes (ignoring other categories) are 2+3 = 5
- Post-tax wage is 13-5 = 8

Direct Taxes: Allocation

- Direct Identification
 - Individual income taxes in Brazil, Colombia, Peru
 - Brazil: for each income source, next question is how much was paid in direct taxes for that income source
 - Property taxes in Brazil (expenditure module of survey)
- Simulation
 - Individual income taxes in many countries
 - Simulated according to reported incomes, household characteristics, and tax code
 - Account for evasion by only simulating for those working in the formal sector
 - In case of US (large formal sector), only simulate for those reporting filing a tax return
 - Payroll taxes paid by employer in Brazil
 - Corporate income taxes in Brazil and US
 - Requires very broad assumptions about burden of corporate income tax

Direct Taxes: Components

- Alternate Survey (with Direct Identification)
 - Property taxes in US
 - Property taxes paid reported in alternate survey
 - Use common covariates of dwelling and household characteristics to match households between the two surveys
 - Use property taxes paid of matched household
- Imputation
 - Agricultural income tax in Ethiopia
 - Distribute total collected from national accounts proportionally to land holdings
- Secondary Source
 - Individual income taxes in Mexico
 - Distribution of income taxes by decile obtained from Ministry of Finance and allocated by decile in survey data

Net Market Income

 Net Market Income = Market Income plus Pensions - Direct Taxes

$$n = m^{+P} - T_d$$

Disposable Income

- Disposable income
 - = Net Market Income + Direct Transfers

$$d = n + B_d$$

= Gross Income - Direct Taxes

$$d = g - T_d$$

Indirect Subsidies and Indirect Taxes

• Presented by Gabriela Inchauste

Disposable Income plus Indirect Subsidies

Disposable Income plus Indirect Subsidies
 = Disposable Income + Indirect Subsidies

$$d^{+B_i} = d + B_i$$

Disposable Income minus Indirect Taxes

Disposable Income minus Indirect Taxes
 = Disposable Income - Indirect Taxes

$$d^{-T_i} = d - T_i$$

Consumable Income

- Consumable Income
 - = Disposable Income minus Indirect Taxes+ Indirect Subsidies

$$c = d^{-T_i} + B_i$$

- = Disposable Income plus Indiret Subsidies
 - Indirect Taxes

$$c = d^{+B_i} - T_i$$

Market Income plus Pensions minus All Taxes

Market Income plus Pensions minus All Taxes
 = Market Income plus Pensions - Direct Taxes
 - Indirect Taxes

$$m^{+P-T} = m^{+P} - T_d - T_i$$

Education

- Valued at government cost for each level
 - Include recurring and investment spending
 - Include administrative costs
 - Possible levels:
 - Day care
 - Preschool
 - Primary
 - Secondary
 - Tertiary
- Disaggregate by geographic area if possible
- Imputation method
 - Combine data in survey on who attends public school at each level with national accounts data on spending
 - If the survey doesn't specifically have a question about whether the child attends public vs. private school
 - See next slide

Education

- Inference + Imputation
 - e.g., Sri Lanka
 - Use question from consumption module on whether household paid facility fees to government schools or school fees to private schools to infer whether child attends public
- Alternate Survey + Prediction + Imputation
 - e.g., United States
 - Main survey asks whether the child attends school, but not public vs. private
 - Find alternate survey that has income data and public vs. private school attendance
 - For sample of children attending school, predict probability of attending public school using covariates common to both surveys as independent variables (probit in alternate survey)
 - Use coefficients to predict probability in main survey
 - Multiply probability by average spending per student by level
 - Expected value of benefit received

Health

- Two main systems: public facilities or public insurance
- Public facilities
 - Divide total spending in national accounts by number of visits in survey data to obtain spending per visit
 - Disaggregate by type of care as much as possible
 - Primary and in-patient care in Armenia, Indonesia
 - Basic health facility vs. hospital in Peru
 - Three levels of childbirth care in Bolivia
- Public insurance
 - Divide total spending in national accounts by number of covered individuals to obtain spending per insured
 - Disaggregate by age if possible
 - Spending on public health insurance varies greatly by age
 - Disaggregate by type of public health insurance if applicable
- Some countries: combination of both systems
- Disaggregate by geographic area if possible
 e.g. Brazil: average spending for each care type-state cell

Health

- Imputation method
 - Combines data from national accounts on amount spent on public health facilities; public health insurance with survey data on who benefits
- Alternate Survey + Imputation
 - Find survey with income data and use of public health facilities or public insurance coverage
 - e.g., Guatemala, South Africa
- Prediction (shouldn't be necessary)
 - If national accounts spending on public health facilities or public health services is not available (very rare)
 - Predict cost of different services using spending on similar services at private facilities in consumption module
- Secondary Source (shouldn't be necessary)
 - Only if no information on use of health services or insurance coverage in main or alternate survey
 - e.g., Chile, Mexico

Scaling Down

- For all income components imputed using amounts from national accounts
- Scale down benefits to avoid overestimating effect of that component
- Example: primary education benefits
 - Divide primary spending in national accounts by disposable income in national accounts to obtain the ratio *R*
 - Scale down primary education benefits in the survey until the ratio of primary education benefits in the survey to disposable income in survey also equals R

User Fees

- Usually directly identified in survey if common in country
- These user fees can also be used to more accurately approximate education or health benefits
- Use local knowledge to determine most plausible scenario (see Wagstaff, 2012):
 - User fee is independent of benefit (use imputation method described before to calculate benefits)
 - e.g., health in Indonesia
 - Subsidized portion of health care is constant; user fee is total cost minus fixed subsidy
 - User fee is proportion of total cost of care
 - e.g., health in Jordan

Market Income plus Pensions plus All Transfers

Market Income plus Pensions plus All Transfers

 Market Income plus Pensions + Direct Transfers
 Direct Subsidies + (Education and Health Benefits - Co-payments and User Fees)

$$m^{+P+B} = m^{+P} + B_d + B_i + B_k - F$$

Final Income

- Final Income
 - = Consumable Income + (Education and Health Benefits
 - Co-payments and User Fees)

$$f = c + B_k - F$$

