Construction of Income Concepts and Components

Sean Higgins
Tulane University

Learning Event on the
Commitment to Equity Methodology

Commitment to Equity Institute, Tulane University,
and the World Bank
Income Concepts

1. Market Income
 - Contributory Pensions
 - Non-Taxable Income
 - Taxable Income

2. Market Income plus Pensions
 - Gross Income
 - Direct Transfers
 - Direct Taxes
 - Indirect Subsidies
 - Indirect Taxes

3. Disposable Income
 - In-Kind Transfers (Education, Health)
 - Copayments, User Fees

4. Net Market Income
 - Final Income
Consumable Income

• Consumable Income
 = Disposable Income
 + Indirect subsidies
 – Indirect taxes

\[c = d + B\downarrow i - T\downarrow i \]
Income Concepts

Market Income
- Contributory Pensions
 - Gross Income
- Non-Taxable Income
- Taxable Income
 - Direct Transfers
 - Direct Taxes

Market Income plus Pensions
- Direct Transfers
 - Net Market Income
 - Direct Taxes

Gross Income
- Direct Transfers
 - Disposable Income
 - Indirect Subsidies
 - Indirect Taxes

Disposable Income
- Indirect Taxes
 - Consumable Income
- In-Kind Transfers (Education, Health)
 - Copayments, User Fees

Final Income
Education

- Valued at government cost for each level
 - Include recurring and investment spending
 - Include administrative costs
 - Possible levels:
 - Day care
 - Preschool
 - Primary
 - Secondary
 - Tertiary
- Disaggregate by geographic area if possible
Imputation method
 – Combine data in survey on who attends public school at each level with national accounts data on spending

If the survey doesn't specifically have a question about whether the child attends public vs. private school:

Inference + Imputation
 – e.g., Sri Lanka
 – Use question from consumption module on whether household paid facility fees to government schools or school fees to private schools to infer whether child attends public

Alternate Survey + Prediction + Imputation
 – See next slide
Education

• Alternate Survey + Prediction + Imputation
 – e.g., United States
 – Main survey asks whether the child attends school, but not public vs. private
 – Find alternate survey that has income data and public vs. private school attendance
 – For sample of children attending school, predict probability of attending public school using covariates common to both surveys as independent variables (probit in alternate survey)
 – Use coefficients to predict probability in main survey
 – Multiply probability by average spending per student by level
 ▪ Expected value of benefit received
Health

• Two main systems: public facilities or public insurance
 • Public facilities
 – Divide total spending in national accounts by number of visits in survey data to obtain spending per visit
 – Disaggregate by type of care as much as possible
 ▪ Primary and in-patient care in Armenia, Indonesia
 ▪ Basic health facility vs. hospital in Peru
 ▪ Three levels of childbirth care in Bolivia
 • Public insurance
 – Divide total spending in national accounts by number of covered individuals to obtain spending per insured
 – Disaggregate by age if possible
 ▪ Spending on public health insurance varies greatly by age
 – Disaggregate by type of public health insurance if applicable
• Some countries: combination of both systems
• Disaggregate by geographic area if possible
 – e.g. Brazil: average spending for each care type-state cell
Health

• Imputation method
 – Combines data from national accounts on amount spent on public health facilities; public health insurance with survey data on who benefits

• Alternate Survey + Imputation
 – Find survey with income data and use of public health facilities or public insurance coverage
 – e.g., Guatemala, South Africa

• Prediction (shouldn't be necessary)
 – If national accounts spending on public health facilities or public health services is not available (very rare)
 – Predict cost of different services using spending on similar services at private facilities in consumption module

• Secondary Source (shouldn't be necessary)
 – Only if no information on use of health services or insurance coverage in main or alternate survey
 – e.g., Chile, Mexico
Income Concepts

1. **Market Income**
 - Contributory Pensions
 - Non-Taxable Income
 - Taxable Income

2. **Market Income plus Pensions**
 - Direct Transfers
 - Gross Income

3. **Gross Income**
 - Direct Transfers
 - Direct Taxes

4. **Net Market Income**
 - Direct Transfers
 - Indirect Subsidies

5. **Disposable Income**
 - Indirect Taxes

6. **Consumable Income**
 - In-Kind Transfers (Education, Health)

7. **Final Income**
 - Copayments, User Fees
User Fees

• Usually directly identified in survey if common in country
• These user fees can also be used to more accurately approximate education or health benefits
• Use local knowledge to determine most plausible scenario (see Wagstaff, 2012):
 – User fee is independent of benefit (use imputation method described before to calculate benefits)
 ▪ e.g., health in Indonesia
 – Subsidized portion of health care is constant; user fee is total cost minus fixed subsidy
 – User fee is proportion of total cost of care
 ▪ e.g., health in Jordan
Income Concepts

Market Income

Contributory Pensions

Market Income plus Pensions

Non-Taxable Income

Direct Transfers

Gross Income

Taxable Income

Direct Taxes

Disposable Income

Indirect Subsidies

In-Kind Transfers (Education, Health)

Indirect Taxes

Consumable Income

Copayments, User Fees

Final Income
• Final Income
 = Consumable Income
 + Education and Health Benefits
 – Co-payments and User Fees

\[f = c + B \downarrow k - F \]
Scaling Down

• For all income components imputed using amounts from national accounts
• Scale down benefits to avoid overestimating effect of that component
• Example: primary education benefits
 – Divide primary spending in national accounts by disposable income in national accounts to obtain the ratio R
 – Scale down primary education benefits in the survey until the ratio of primary education benefits in the survey to disposable income in survey also equals R
Comparing Brazil and US

Table 1

Inequality by Income Concept in the United States (2011) and Brazil (2009)

<table>
<thead>
<tr>
<th></th>
<th>Market Income</th>
<th>Gross Income</th>
<th>Disposable Income</th>
<th>Post-Fiscal Income</th>
<th>Final Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark case</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gini</td>
<td>0.446</td>
<td>0.415</td>
<td>0.376</td>
<td>0.380</td>
<td>0.319</td>
</tr>
</tbody>
</table>
| Reduction (pp)
(a) | -0.031 | -0.070 | | -0.065 | -0.127 |
| Reduction (%)
(b) | -0.069 | -0.157 | | -0.147 | -0.285 |
| **Brazil** | | | | | |
| Gini | 0.548 | 0.528 | 0.513 | 0.510 | 0.431 |
| Reduction (pp)
(a) | -0.020 | -0.036 | | -0.038 | -0.117 |
| Reduction (%)
(b) | -0.037 | -0.065 | | -0.069 | -0.214 |
| **Sensitivity analysis** | | | | | |
| **United States** | | | | | |
| Gini | 0.481 | 0.415 | 0.372 | 0.376 | 0.314 |
| Reduction (pp)
(a) | -0.067 | -0.109 | | -0.105 | -0.168 |
| Reduction (%)
(b) | -0.139 | -0.227 | | -0.218 | -0.348 |
| **Brazil** | | | | | |
| Gini | 0.570 | 0.530 | 0.512 | 0.509 | 0.428 |
| Reduction (pp)
(a) | -0.040 | -0.058 | | -0.061 | -0.142 |
| Reduction (%)
(b) | -0.069 | -0.102 | | -0.107 | -0.250 |
Comparing Brazil and US

a. United States (2011)

b. Brazil (2009)

Cumulative proportion of the population

Cumulative proportion of tax or transfer

- 45 Degree Line
- Market Income
- Indirect Taxes
- Health and Education
- All Taxes
- Indirect Subsidies
- Direct Transfers
- Social Spending
Even if poverty decreases
 – Poor can be made poorer
 – Or non-poor made poor
Fiscal Impoverishment
Higgins and Lustig (2015)

• In Brazil ($2.50 PPP per day poverty line)
 – Inequality is reduced
 – Poverty is reduced
 – But one-third of the (consumable income) poor are made poorer (or non-poor made poor) by taxes and transfers

• There is fiscal impoverishment if
 \[y_i^1 < y_i^0 \text{ and } y_i^1 < z \text{ for some } i \]

• There are fiscal gains to the poor if
 \[y_i^1 > y_i^0 \text{ and } y_i^0 < z \text{ for some } i \]
Problems with Conventional Measures

Higgins and Lustig (2015)

<table>
<thead>
<tr>
<th>Measure</th>
<th>Issue</th>
<th>Example with $Z = (6, 10]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poverty (and stochastic dominance)</td>
<td>↓ poverty $\not\Rightarrow$ no FI (anonymity)</td>
<td>$y^0 = (5, 8, 20)$, $y^1 = (9, 6, 18)$</td>
</tr>
<tr>
<td>Horizontal equity</td>
<td>Horizontally equitable $\not\Rightarrow$ no FI</td>
<td>$y^0 = (1, 1, 7, 7, 13)$, $y^1 = (3, 3, 6, 6, 11)$</td>
</tr>
<tr>
<td></td>
<td>No FI $\not\Rightarrow$ horizontally equitable</td>
<td>$y^0 = (5, 5, 6, 20)$, $y^1 = (5, 7, 6, 18)$</td>
</tr>
<tr>
<td>Progressivity</td>
<td>Progressive $\not\Rightarrow$ no FI</td>
<td>$y^0 = (1, 3, 7, 13)$, $y^1 = (3, 4, 6, 11)$</td>
</tr>
<tr>
<td></td>
<td>No FI $\not\Rightarrow$ progressive</td>
<td>$y^0 = (1, 3, 7, 14)$, $y^1 = (1, 5, 8, 11)$</td>
</tr>
</tbody>
</table>
Axiomatic Measure
Higgins and Lustig (2015)

\[f(y^0, y^1; z) = k \sum_{i=1}^{n} \left(\min\{y_i^0, z\} - \min\{y_i^0, y_i^1, z\} \right) \]

- Pre-fisc poor and impoverished \((y_i^1 < y_i^0 < z)\) contributes fall in income, \(y_i^0 - y_i^1\)
- Pre-fisc non-poor and impoverished \((y_i^1 < z \leq y_i^0)\) contributes amount to transfer her back to poverty line, \(z - y_i^1\)
- Non-impoverished pre-fisc non-poor \((y_i^0 \geq z \text{ and } y_i^1 \geq z)\) contributes \(z - z = 0\)
- Non-impoverished pre-fisc poor \((y_i^0 < z \text{ and } y_i^1 \geq y_i^0)\) contributes \(y_i^0 - y_i^0 = 0\)
Conventional Measures in Brazil

Higgins and Lustig (2015)

(a) First Order Stochastic Dominance
(Cumulative Distribution Functions)

(b) Global Progressivity
(Lorenz and Concentration Curves)
• At the $2.50 per person per day poverty line:
 – 34.9% of the consumable income poor are fiscally impoverished
 – Total fiscal impoverishment of over $676 million, or 10% of budget of Bolsa Família
 – Fiscal impoverishment per impoverished person is about 8% of their income
 – Not all fiscally impoverished are excluded from safety net: for example, 65% receive Bolsa Familia
Decomposing the Poverty Gap

Higgins and Lustig (2015)

(a) Total FI and FGP
(Billions of Dollars per Year)

(b) Total Poverty Gaps
(Billions of Dollars per Year)