The Analytics of Fiscal Redistribution

Nora Lustig
Tulane University
Nonresident Fellow CGD and IAD

Ali Enami and Rodrigo Aranda
Tulane University

The World Bank
Washington, DC
February 1, 2016
Today’s presentation is based on the theory chapter:

If you use materials from this presentation, please cite as shown.
Fiscal Policy and Inequality
Four Key Questions

- Does the net fiscal system decrease inequality?
- Is a particular tax or transfer equalizing or unequalizing?
- What is the contribution of a particular tax or transfer (or any combination of them) to the change in inequality?
- What is the inequality impact if one increases the size of a tax (transfer) or its progressivity?
Chapter Outline

• Fiscal Redistribution: Single and Multiple Interventions
 • Allowing for Reranking
 • Allowing for No Dominance
 • Allowing for Different Original Distributions
 • Different Inequality Measures
 • Poverty
Assumptions for Now

- **No reranking**: the ordering of individuals in the post-fiscal state is the same as in the pre-fiscal state: i.e., no swapping of places
- **Dominance**: pre-fiscal and post-fiscal Lorenz curves do not cross (and the difference is statistically significant)
- **Same pre-fiscal (original) income distribution**: rules out comparisons of redistributive of fiscal systems across countries and over-time
Key questions addressed for the following cases

- Single intervention system:
 - Tax OR
 - Transfer

- Multiple interventions system
 - One tax and one transfer
 - n taxes and m transfers

- Lambert’s conundrum and the startling consequences of path dependency
Fiscal System with a Single Intervention
Single Intervention

• *Single* can mean that all the taxes are added into a single category (same for transfers)

• Progressivity measures

 - Concentration curve
 - Concentration coefficient
 - Kakwani Index
Concentration Coefficient: C

\[Gini = \frac{(A+B)}{(A+B+C)} \]

\[C = \frac{(A)}{(A+B+C)} \]

Cumulative share of population (ordered by pre-tax income)
Kakwani Index

- **Progressive Tax:** \[\Pi^K_T = C_t - G_x > 0 \]

- **Proportional Tax:** \[\Pi^K_T = C_t - G_x = 0 \]

- **Regressive Tax:** \[\Pi^K_T = C_t - G_x < 0 \]
Impact on Inequality Depends On...

- Progressivity of a tax (transfer)

- Size of the tax (transfer), where size equals the total tax (transfer) divided by total pre-tax (pre-transfer) income

 ➢ A large regressive tax can be more equalizing than a small progressive one
Fiscal Policy and Inequality
Four Key Questions

- Does the net fiscal system decrease inequality?
- Is a particular tax or transfer equalizing or unequalizing?
- What is the contribution of a particular tax or transfer (or any combination of them) to the change in inequality?
- What is the inequality impact if one increases the size of a tax (transfer) or its progressivity?
Progressivity vs. Size of Intervention: A System with Only One Tax

• In a system with only one tax:

\[RE_T = \frac{g}{1-g} \Pi_T^K \]

• Getting the partial derivatives:

\[\frac{\partial RE_T}{\partial g} = \frac{1}{(1-g)^2} \Pi_T^K \]

\[\frac{\partial RE_T}{\partial \Pi_T^K} = \frac{g}{1-g} \]
Fiscal System with Multiple Interventions
Fiscal Policy and Inequality
Four Key Questions

- Does the net fiscal system decrease inequality?
- Is a particular tax or transfer equalizing or unequalizing?
- What is the contribution of a particular tax or transfer (or any combination of them) to the change in inequality?
- What is the inequality impact if one increases the size of a tax (transfer) or its progressivity?
Does the net fiscal system decrease inequality?

Let’s define the Redistributive Effect of the net fiscal system as

$$RE_N = G_x - G_N$$

Where G_x and G_N are the pre-tax-pre-transfer Gini coefficient and post-tax-post-transfer Gini, respectively.
Does the net fiscal system decrease inequality?

From Lambert (2001), we know that \(RE_N \) is equal to the weighted sum of the redistributive effect of taxes and transfers

\[
RE_N = \frac{(1 - g)RE_t + (1 + b)RE_B}{1 - g + b}
\]

Where

- \(RE_t \) and \(RE_B \) are the Redistributive Effect of the tax and the transfer, respectively
- \(g \) and \(b \): size of tax and transfer, respectively.

That is, total taxes and total transfers divided by total pre-tax and pre-transfer income, respectively.
Does the net fiscal system decrease inequality?

For the net fiscal system to be equalizing:

\[RE_N = \frac{(1-g)RE_t + (1+b)RE_B}{1-g+b} > 0 \]

Condition 1:

\[\rightarrow RE_t > -\frac{(1+b)}{(1-g)} RE_B \]
Does the net fiscal system decrease inequality?

<table>
<thead>
<tr>
<th>Tax</th>
<th>Regressive $\Pi_f^K < 0$</th>
<th>Neutral $\Pi_f^K = 0$</th>
<th>Progressive $\Pi_f^K > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regressive $\rho_B^K < 0$</td>
<td>Neutral $\rho_B^K = 0$</td>
<td>Progressive $\rho_B^K > 0$</td>
</tr>
<tr>
<td></td>
<td>Always Unequalizing</td>
<td>Always Unequalizing</td>
<td>Equalizing if and only if Condition 1 holds</td>
</tr>
<tr>
<td></td>
<td>Always Unequalizing</td>
<td>No Change in Equality</td>
<td>Always Equalizing</td>
</tr>
<tr>
<td></td>
<td>Equalizing if and only if Condition 1 holds</td>
<td>Always Equalizing</td>
<td>Always Equalizing</td>
</tr>
</tbody>
</table>

Condition 1:

$$RE_t > -\frac{(1 + b)}{(1 - g)} RE_B$$
• The above result is well-known in the literature:

- A fiscal system with a regressive tax can be equalizing as long as transfers are progressive and the condition above is fulfilled
- A fiscal system with a regressive tax that collects more revenues than a less regressive one may be more equalizing

• However, Lambert’s equation has more fundamental implications
Fiscal Policy and Inequality
Four Key Questions

- Does the net fiscal system decrease inequality?
- Is a particular tax or transfer equalizing or unequalizing?
- What is the contribution of a particular tax or transfer (or any combination of them) to the change in inequality?
- What is the inequality impact if one increases the size of a tax (transfer) or its progressivity?
Is a particular tax or transfer equalizing?

- If there is a single intervention in the system, any of the progressivity measures discussed earlier will give an unambiguous answer.

- If there is a tax and a transfer, then this is no longer the case.
 - A regressive tax can be equalizing in the sense that the reduction in inequality can be larger with the tax than without it.
Lambert’s Conundrum

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Income x</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>Tax t</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>42</td>
</tr>
<tr>
<td>Transfer B</td>
<td>21</td>
<td>14</td>
<td>7</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>Net Income N</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Lambert, 2001, Table 11.1, p. 278
Lambert’s Conundrum

- The Redistributive Effect of the tax only in this example is equal to -0.05, highlighting its regressivity.

- The Redistributive Effect of the transfer is equal to 0.19.

- Yet, the Redistributive Effect of the net fiscal system is 0.25, higher than the effect without the taxes!
Lambert’s Conundrum

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Income x</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>Transfer B</td>
<td>21</td>
<td>14</td>
<td>7</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>Post-Transfer Income</td>
<td>31</td>
<td>34</td>
<td>37</td>
<td>40</td>
<td>142</td>
</tr>
<tr>
<td>Tax t</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>42</td>
</tr>
<tr>
<td>Net Income N</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Lambert, 2001, Table 11.1, p. 278
Lambert’s Conundrum
Path Dependency

- If a tax is regressive vis-à-vis the original income but progressive with respect to the less unequally distributed post-transfer income

- Regressive taxes *can* exert an equalizing effect over an above the effect of progressive transfers

- Note that institutional path dependency is not the same as mathematical path dependency
When could a regressive tax exert an equalizing force?

For the reduction in inequality to be higher with the tax than without it, the following condition must hold:

\[RE_N = \frac{(1 - g)RE_t + (1 + b)RE_B}{1 - g + b} > RE_B \]

Condition 2

\[\rightarrow RE_t > -\frac{(g)}{(1 - g)}RE_B \]
Is a tax equalizing?
Answer for a system with a tax and a transfer

<table>
<thead>
<tr>
<th>System with a Transfer that is</th>
<th>Regressive $\rho_B^K < 0$</th>
<th>Neutral $\rho_B^K = 0$</th>
<th>Progressive $\rho_B^K > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding a Tax that is</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regressive $\Pi_T^K < 0$</td>
<td>Always Unequalizing</td>
<td>More Unequalizing</td>
<td>More Equalizing only if Condition 2 holds</td>
</tr>
<tr>
<td>Neutral $\Pi_T^K = 0$</td>
<td>Always Unequalizing</td>
<td>No Change in Inequality</td>
<td>Always Equalizing</td>
</tr>
<tr>
<td>Progressive $\Pi_T^K > 0$</td>
<td>More Equalizing only if Condition 2 holds</td>
<td>Always Equalizing</td>
<td>More Equalizing</td>
</tr>
</tbody>
</table>

Condition 2

$$\rightarrow RE_t > -\frac{(g)}{(1-g)} RE_B$$
Equalizing Regressive Taxes Exist in Real Life

- Chile’s 1996 fiscal system had equalizing regressive taxes (Engel et al., 1999)
 - Redistributive Effect of Net Fiscal System (taxes and transfers together) = 0.0583 (decline in Gini points)
 - Redistributive Effect of System with Taxes only = -0.0076
 - Redistributive Effect of System with Transfers but without Taxes = 0.0574

 - Note that 0.0583 > 0.0574
- CEQs for Chile 2009 and South Africa 2010 also show that regressive consumption taxes are equalizing
Marginal Contributions

<table>
<thead>
<tr>
<th></th>
<th>Brazil</th>
<th>Chile</th>
<th>Colombia</th>
<th>Indonesia</th>
<th>Mexico</th>
<th>Peru</th>
<th>South Africa</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Market to Post-fiscal Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redistributive Effect</td>
<td>0.0446</td>
<td>0.0370</td>
<td>0.0073</td>
<td>0.0061</td>
<td>0.0308</td>
<td>0.0151</td>
<td>0.0789</td>
<td>0.0306</td>
</tr>
<tr>
<td>Direct taxes</td>
<td>0.0171</td>
<td>0.0179</td>
<td>0.0019</td>
<td>0.0043</td>
<td>0.0113</td>
<td>0.0048</td>
<td>0.0711</td>
<td>0.0125</td>
</tr>
<tr>
<td>Direct transfers</td>
<td>0.0382</td>
<td>0.0220</td>
<td>0.0057</td>
<td>0.0027</td>
<td>0.0052</td>
<td>0.0001</td>
<td></td>
<td>0.0207</td>
</tr>
<tr>
<td>Indirect taxes</td>
<td>-0.0014</td>
<td></td>
<td>-0.0017</td>
<td>-0.0028</td>
<td>0.0027</td>
<td>0.0052</td>
<td></td>
<td>0.0007</td>
</tr>
<tr>
<td>Indirect subsidies</td>
<td>0.0008</td>
<td></td>
<td>0.0015</td>
<td>0.0052</td>
<td>0.0047</td>
<td></td>
<td></td>
<td>0.0025</td>
</tr>
<tr>
<td>Kakwani</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct taxes</td>
<td>0.1738</td>
<td></td>
<td>0.3481</td>
<td>0.1373</td>
<td>0.2411</td>
<td>0.3853</td>
<td>0.1109</td>
<td>0.2328</td>
</tr>
<tr>
<td>Direct transfers</td>
<td>0.5310</td>
<td></td>
<td>0.9064</td>
<td>0.9233</td>
<td>0.6248</td>
<td>0.7931</td>
<td>0.9612</td>
<td>0.8193</td>
</tr>
<tr>
<td>Indirect taxes</td>
<td>-0.0536</td>
<td></td>
<td>-0.0172</td>
<td>-0.1986</td>
<td>0.0129</td>
<td>0.0527</td>
<td></td>
<td>-0.0466</td>
</tr>
<tr>
<td>Indirect subsidies</td>
<td>0.8295</td>
<td></td>
<td>-0.7978</td>
<td>0.5034</td>
<td>0.0645</td>
<td>0.2457</td>
<td></td>
<td>0.4882</td>
</tr>
</tbody>
</table>

Source: author’s calculations based on Brazil: Higgins and Pereira, 2014; Chile: Jaime Ruiz Tagle and Dante Contreras, 2014; Colombia: Melendez, 2014; Indonesia: Jellema et al., 2014; Mexico: Scott, 2014; Peru: Jaramillo, 2013; South Africa: Inchauste et al., 2014.
Generalizing the result to \(n \) taxes and \(m \) transfers

Is a particular tax or transfer equalizing?

- The results shown above can be generalized to \(n \) taxes and \(m \) transfers (in chapter but not presented here)

- Note that the results do not require for the size of total taxes and total transfers to be the same (see conditions 1 and 2 above)
Path Dependency Underscores the Importance of the Analysis Being Comprehensive

- Obvious reason
 - To capture the full effect of the net fiscal system

- More subtle but fundamental reason

 - Assessing the progressivity of a tax or a transfer in isolation can give the wrong answer to the question: Is the tax or the transfer equalizing?

 - Think of the example of Chile and South Africa just shown above
Fiscal Policy and Inequality
Four Key Questions

- Does the net fiscal system decrease inequality?
- Is a particular tax or transfer equalizing or unequalizing?
- What is the contribution of a particular tax or transfer (or any combination of them) to the change in inequality?
- What is the inequality impact if one increases the size of a tax (transfer) or its progressivity?
What is the contribution of a particular tax or transfer to the change in inequality?

- **Sequential method**
 - May give the wrong answer to the “without vs. with comparison” because it ignores path dependency

- **Marginal contribution method (same for poverty)**
 - Gives correct answer to the “without vs. with comparison” but does not fulfill the principle of aggregation: i.e., the sum of the marginal contributions will not equal the total change in inequality (except by coincidence)

- **Average Contribution with all possible paths considered (Shapley value)**
 - Fulfills the principle of aggregation, takes care of path dependency but the sign may be different from the marginal contribution => problematic?
Calculating the Marginal Contribution of a Tax

The marginal contribution of a tax is defined as

$$MC_t = G_{x+B} - G_{x+B-t}$$

Where G_{x+B}, G_{x+B-t} and G_{x+B} are the Gini coefficient of income with the transfer but without the tax and the Gini coefficient with the transfer and with the tax, respectively.

If $MC_t > 0$, remember, the tax is equalizing.
Sequential vs. Marginal Contribution
Why the sequential method can be misleading

Chile’s 1996 fiscal system (Engel et al., 1999)

- Sequential contribution method: -0.0076
- Marginal contribution method: 0.009
Fiscal Policy and Inequality
Four Key Questions

- Does the net fiscal system decrease inequality?
- Is a particular tax or transfer equalizing or unequalizing?
- What is the contribution of a particular tax or transfer (or any combination of them) to the change in inequality?
- What is the inequality impact if one increases the size of a tax (transfer) or its progressivity?
Progressivity vs. Size of Intervention: A System with One Tax and One Transfer

• In a system with one tax and one transfer:

\[\frac{\partial MC_T}{\partial g} = \frac{(1+b)\prod_T^K + b \rho_B^K}{(1-g+b)^2} \]

\[\frac{\partial MC_T}{\partial \prod_T^K} = \frac{g}{1-g+b} \]

• Getting the partial derivatives:
Effectiveness: previous CEQ index

- In Lustig and Higgins (2013) effectiveness is defined as:

\[
\frac{\Delta Gini}{\text{Spending} / \text{GDP}}
\]

- While this indicator would correctly rank fiscal incidences with positive contribution to reducing inequality, it has an awkward interpretation.

- It can be interpreted as how much Gini index would change if the tax or transfer of interest is scaled up to the size of GDP using a linear extrapolation. As a result, the change in Gini could exceed unity (maximum possible value)
Moreover, the effectiveness indicators usually rely on an “ideal” value as the reference point which the previous index lacked such reference point.

Therefore, in the new handbook we define three new indicators to account for these shortcomings:

1. Impact Effectiveness
2. Spending Effectiveness
3. Impact-Ranked Effectiveness
Effectiveness: Impact Effectiveness

\[
\text{Impact Effectiveness}_{\text{End income} T (or B)} = \frac{MC_{\text{End income} T (or B)}}{MC_{\text{End income} T (or B)}^*} \times 100\%
\]

where \(MC_{\text{End income}} T (or B)\) is the marginal contribution of a Tax (or a Benefit) to reducing inequality or poverty and \(MC_{\text{End income}}^* T (or B)\) is the maximum possible \(MC_{\text{End income}} T (or B)\) if the same amount of Tax (or Benefit) is distributed differently among individuals.
Effectiveness: Spending Effectiveness

\[\text{Spending Effectiveness}^{\text{End income}}_{T \ (or \ B)} = \frac{T^* \ (or \ B^*)}{T \ (or \ B)} \times 100\% \]

where \(T^* \ (or \ B^*) \) is the minimum amount of \(T \ (or \ B) \) that is needed to create the same \(MC^{\text{End income}}_{T \ (or \ B)} \).
Effectiveness: Impact-Ranked Effectiveness

\[
IRE_T^{\text{End income}} \ (or \ B) = \text{Rank} \left\{ \left(\frac{1 - MC_T^{\text{End income}}}{1 - MC_T^{\text{End income}}} \right) \ast \text{Sign} \left(MC_T^{\text{End income}} \right) \right\}
\]
References

• Duclos, Jean-Yves and Abdelkrim Araar. 2007. Poverty and Equity: Measurement, Policy and Estimation with DAD (Vol. 2). Springer. Chapters 7 and 8. (available online)

APPENDIX
Concentration Curve Progressive Tax

Post-tax Lorenz curve
=> Distribution became more equal

Pre-tax Lorenz curve

Concentration curve of a progressive tax
Concentration Curve
Regressive Tax

Concentration curve of a regressive tax

Pre-tax Lorenz curve

Post-tax Lorenz curve

=> Distribution became more unequal

Cumulative share of income and taxes

Cumulative share of population (ranked by pre-tax income)
Concentration Coefficient: CC

- Gini = $(A+B)/(A+B+C)$
- $CC = (A)/(A+B+C)$

Diagram showing:
- Cumulative share of income, tax or transfer
- Cumulative share of population (ordered by pre-tax income)
- Pre-tax Lorenz curve
- Concentration curve of intervention
Kakwani Index: Tax

The Kakwani index of progressivity of a tax t is defined as:

$$\Pi_{T}^{K} = C_{t} - G_{x}$$

Where:
- G_{x} is the Gini coefficient of pre-tax income
- C_{t} is the concentration coefficient of the tax t
Kakwani Index

- Progressive Tax: \(\prod^K_T = C_t - G_x > 0 \)
- Proportional Tax: \(\prod^K_T = C_t - G_x = 0 \)
- Regressive Tax: \(\prod^K_T = C_t - G_x < 0 \)
Progressivity of Taxes: A Diagrammatic Representation

Poll tax: per capita tax is equal for everyone (very regressive)
- Concentration Curve coincides with the diagonal
 - Concentration Coefficient = 0
 - Kakwani Index < 0

Globally regressive tax: tax as a share of market income declines with income (not necessarily everywhere)
- Concentration Curve lies above pre-tax Lorenz curve
 - Concentration Coefficient < Gini for market income
 - Kakwani Index < 0

Proportional tax: tax as a share of market income is the same for everyone
- Concentration Curve coincides with the pre-tax Lorenz curve
 - Concentration Coefficient = Gini for market income
 - Kakwani Index = 0

Globally progressive tax: tax as a share of market income rises with income (not necessarily everywhere)
- Concentration Curve lies below pre-tax Lorenz curve
 - Concentration Coefficient > Gini for market income
 - Kakwani Index > 0
In a world with just a *single* tax

- A necessary and sufficient condition for a tax to be equalizing is to have a positive Kakwani index
- A necessary and sufficient condition for a tax to be unequalizing is to have a negative Kakwani index
- Analogous conditions apply to transfers
Kakwani Index: Transfer

The Kakwani index of progressivity of a transfer B is defined as:

$$\rho^K_B = G_x - C_B$$

Where:

- G_x is the Gini coefficient of pre-transfer income
- C_B is the concentration coefficient of the transfer B

Note that the Gini coefficient and the concentration coefficient are in reversed order from the Kakwani index for a tax
Progressivity of Transfers: A Diagrammatic Representation

Globally progressive transfer in absolute terms (pro-poor): per capita benefit declines with pre-transfer income (not necessarily everywhere)
- Concentration Curve lies above the diagonal
 - Concentration Coefficient < 0
 - Kakwani Index > 0

Globally progressive transfer: benefit as a share of pre-transfer income declines with income (not necessarily everywhere)
- Concentration Curve lies above pre-transfers Lorenz curve
 - Concentration Coefficient < Gini for pre-transfer income
 - Kakwani Index > 0

Proportional transfer: benefit as a share of pre-transfer income is the same for everyone
- Concentration Curve coincides with the pre-transfer Lorenz curve
 - Concentration Coefficient = Gini for pre-transfer income
 - Kakwani Index = 0

Transfer neutral in absolute terms: per capita benefit is equal for everyone.
- Concentration Curve coincides with the diagonal
 - Concentration Coefficient = 0
 - Kakwani = 0

Globally regressive transfer: benefit as a share of pre-transfer income increases with income (not necessarily everywhere)
- Concentration Curve lies below market income Lorenz curve
 - Concentration Coefficient > Gini for pre-transfer income
 - Kakwani Index < 0

0 Cumulative share of income and transfers
0 Cumulative share of population (ordered by market income)
Impact on Inequality Depends On...

- Progressivity of a tax (transfer)
- Size of the tax (transfer), where size equals the total tax (transfer) divided by total pre-tax (pre-transfer) income

- A large regressive tax can be more equalizing than a small progressive one as shown in next slide
Redistributive Effect and the Progressivity and Level of Taxes

<table>
<thead>
<tr>
<th>Gross Income</th>
<th>Tax A=50.5%</th>
<th>Net Income under A</th>
<th>Tax B=1%</th>
<th>Net Income under B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td>Tax Distribution</td>
<td>Income Distribution</td>
<td>Tax Distribution</td>
<td>Income Distribution</td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>21%</td>
<td>1</td>
<td>2%</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>79%</td>
<td>50</td>
<td>98%</td>
</tr>
<tr>
<td>Total</td>
<td>101</td>
<td>100%</td>
<td>51</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: Duclos and Tabi, 1996, Table 1.
Progressivity vs. Size of Intervention: A System with Only One Transfer

• In a system with only one tax:

\[MC_B = RE_B = \frac{b}{1+b} \rho^K_B \]

• Getting the partial derivatives:

\[\frac{\partial MC_B}{\partial b} = \frac{1}{(1+b)^2} \rho^K_B \]

\[\frac{\partial MC_B}{\partial \rho^K_B} = \frac{b}{1+b} \]

• For a change in progressivity to be more equalizing than a change in size:

\[\frac{\partial MC_B}{\partial \rho^K_B} > \frac{\partial MC_B}{\partial b} \Rightarrow b(1+b) > \rho^K_B \]
Progressivity vs. Size of Intervention: A System with Only One Tax

• In a system with only one tax:

\[RE_T = \frac{g}{1-g} \Pi^K_T \]

• Getting the partial derivatives:

\[\frac{\partial RE_T}{\partial g} = \frac{1}{(1-g)^2} \Pi^K_T \]

\[\frac{\partial RE_T}{\partial \Pi^K_T} = \frac{g}{1-g} \]

• For a change in progressivity to be more equalizing than a change in size:

\[\frac{\partial RE_T}{\partial \Pi^K_T} > \frac{\partial RE_T}{\partial g} \Rightarrow g(1-g) > \Pi^K_T \]
Is a transfer equalizing?

Answer for a system with a tax and a transfer

<table>
<thead>
<tr>
<th>System with a Tax that is</th>
<th>Adding a Transfer that is</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regressive</td>
<td>Regressive $\rho_B^K < 0$</td>
</tr>
<tr>
<td>$\Pi_T^K < 0$</td>
<td>Less Unequalizing if and only if Condition 3 holds</td>
</tr>
<tr>
<td>$\Pi_T^K = 0$</td>
<td>Always Unequalizing</td>
</tr>
<tr>
<td>$\Pi_T^K > 0$</td>
<td>Always Equalizing</td>
</tr>
</tbody>
</table>

Condition 3

$$RE_B > \frac{b}{1+b} RE_T$$
Progressivity vs. Size of Intervention: A System with One Tax and One Transfer

• For a change in progressivity to be more equalizing than a change in size:

\[
\frac{\partial MC_T}{\partial \Pi^K_T} > \frac{\partial MC_T}{\partial g} \Rightarrow g > \Pi^K_T + RE_N
\]

• Similarly:

\[
\frac{\partial MC_B^K}{\partial \rho^K_B} > \frac{\partial MC_B^K}{\partial b} \Rightarrow b > \rho^K_B - RE_N
\]
Progressivity vs. Size of Intervention: A System with Multiple Taxes and Transfers

• The formulas are the same:

\[
\frac{\partial MC_{T_i}}{\partial \Pi_{T_i}^K} > \frac{\partial MC_{T_i}}{\partial g_i} \Rightarrow g_i > \Pi_{T_i}^K + RE_N
\]

\[
\frac{\partial MC_{B_j}}{\partial \rho_{B_j}^K} > \frac{\partial MC_{B_j}}{\partial b_j} \Rightarrow b_j > \rho_{B_j}^K - RE_N
\]
Next Steps: Relaxing Assumptions

- **Reranking**: individuals can swap positions in the post-fiscal income ordering; true of all systems in the real world

- **No dominance**: post-fiscal Lorenz curve crosses the pre-fiscal Lorenz curve; normative parameter must be explicitly introduced (will not be covered today)

- **Different pre-fiscal (original) distributions**: comparing the inequality- and poverty-reducing capacity of fiscal systems across countries and over time (will not be covered today)
Reranking: Introduction

- In the presence of reranking, the usual rule of thumbs do not work properly. For example, a progressive tax can be uneqaulizing

<table>
<thead>
<tr>
<th>Individual</th>
<th>Original Income</th>
<th>Tax (% Income)</th>
<th>End Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>0 (0%)</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>2 (18.18%)</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>4 (33.33%)</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>6 (46.15%)</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>46</td>
<td>12</td>
</tr>
<tr>
<td>Average</td>
<td>-</td>
<td>11.5</td>
<td>3</td>
</tr>
<tr>
<td>Gini</td>
<td>-</td>
<td>0.054</td>
<td>-</td>
</tr>
</tbody>
</table>

Gini: 0.074
Calculating the progressivity with respect to any pre-tax (or pre-transfer) income concept suffers from the same shortcoming. So it doesn’t matter whether we use the original income (i.e., pre-all taxes and transfers) or the “Final income without a specific tax (or transfer)”, the progressivity index does not give us a clear answer about the equalizing effect of a tax (or transfer).

Calculating the progressivity with respect to the Final income (i.e., post-all taxes and transfers) creates complete dependence between the indices of taxes and transfers. That means, for example, if you change a tax, the progressivity of a transfer will change too!
Reranking: Defining a new progressivity index (2)

- The middle ground is to define a **semi-independent** index of progressivity. We suggest to calculate the progressivity index using the monetary values of the Original Income and a specific tax (or transfer) and the ranking of individuals with respect to the End Income. In this way, unless a change in a tax or transfer changes the End Income ranking, the progressivity indices of taxes and transfer will be independent.
Formally, we define this \textit{modified Kakwani index of a tax} as follows:

\[
\prod_{T}^{K_{EI}} = C_{T}^{EI} - C_{OI}^{EI}
\]

\text{Concentration coefficient of a tax w.r.t. the End Income ranking}

\text{Concentration coefficient of the Original Income w.r.t. the End Income ranking}

\text{Modified Kakwani index of a tax w.r.t. the End Income ranking}

- and for a \textit{transfer}:

\[
\rho_{B}^{K_{EI}} = C_{OI}^{EI} - C_{B}^{EI}
\]

\text{Normalized rank with respect to the income Q}

\text{where:}

\[
C_{Y}^{Q} = \frac{2 \text{Cov}(Y, F_{Q})}{\text{Avg}(Y)}
\]
Reranking: Does adding a tax to a system with a transfer in place increase the equality?

- The new index can produce general rule of thumbs. An example is follows

<table>
<thead>
<tr>
<th>Adding a Tax that with respect to the end income ranking is</th>
<th>Regressive $\Pi_T^{K_{X-T+B}} < 0$</th>
<th>Neutral $\rho_B^{K_{X-T+B}} = 0$</th>
<th>Progressive $\rho_B^{K_{X-T+B}} > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regressive $\rho_B^{K_{X-T+B}} < 0$</td>
<td>More Equalizing if and only if condition A holds</td>
<td>More Equalizing if and only if condition A holds</td>
<td>More Equalizing if and only if condition A holds</td>
</tr>
<tr>
<td>Neutral $\rho_B^{K_{X-T+B}} = 0$</td>
<td>More Equalizing if and only if condition A holds</td>
<td>More Equalizing if and only if condition A holds</td>
<td>Always Equalizing</td>
</tr>
<tr>
<td>Progressive $\rho_B^{K_{X-T+B}} > 0$</td>
<td>More Equalizing if and only if condition A holds</td>
<td>Always Equalizing</td>
<td>Always Equalizing</td>
</tr>
</tbody>
</table>

\[
\left(\frac{g I T^{K_{X-T+B}} + g b \rho_B^{K_{X-T+B}}}{1-g+b}\right) + (G_{X+B} - C_{X+B}^{K_{X-T+B}}) > 0 \quad (A)
\]
Thank you!